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Abstract. The relaxation back to thermal equilibrium of one very dilute species of charged 
particle in a heat bath of different neutral particles, with which they collide elastically, is 
considered by means of the Boltzmann equation for the one-particle distribution function 
of the test particles. The Boltzmann collision integral is used to describe the collisions. 
A rigorous proof that relaxation to thermal equilibrium will always take place, even in 
the presence of a magnetic field, is given, initially for the case when there is no spatial 
dependence. The proof is based on a functional of the distribution function with properties 
similar to the Boltzmann entropy. This quantity is shown always to decrease until thermal 
equilibrium is reached, and to be bounded below by its value in thermal equilibrium. The 
proof is then generalised to allow for arbitrary spatial dependence of the magnetic field 
and the initial distribution function. The special role played by states of local thermal 
equilibrium is emphasised. The thermal distribution function no longer represents equili- 
brium when an electric field is present, and i t  is shown how this arises in the present 
context; the possibility of particle runaway is also considered. The functional employed 
is then shown to have successive time derivatives of alternate sign when only a magnetic 
field is present; other functionals which always decrease are derived, both with and without 
magnetic field. The conjecture that the alternating derivative property singles out the 
physical entropy is shown to be dubious for this system. 

1. Introduction 

This paper is concerned with the properties of a very dilute gas of charged test particles 
in a heat bath of different neutral particles (the ‘host’ particles) with which they collide 
elastically. A time-dependent magnetic field may also be present. The neutral particles 
are in thermal self-equilibrium. A proof is given that, when the collisions between 
the test and host particles are governed by a collision integral of Boltzmann’s form, 
the test particles will always relax back to thermal equilibrium. 

One method of proof for the case of zero magnetic field and no spatial variations 
is to expand the distribution function for the test particles in the eigenfunctions of 
the collision operator. It is therefore necessary for the validity of this method that 
these eigenfunctions comprise a complete integrable set. This has not been proved 
generally. The demonstration of relaxation presented here does not depend on this 
result, and also allows a magnetic field and spatial inhomogeneities to be present. It 
is conceptually similar to the ‘generalised H theorem’ mentioned by Chapman and 
Cowling (1970, p 371). 

The conjectures of McKean (1966) that, of all the functionals of the test particle 
distribution function which decrease with time, only one will have successive time 
derivatives of alternating sign, and that that functional is the physical entropy for the 
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system, are considered in detail. The functional used to prove relaxation takes place 
is shown to have this property even in the presence of a magnetic field, and alternative 
functionals are derived. 

The notation is set out in table 1. The Boltzmann equation governing the evolution 
of the test particle distribution function is introduced in 9 2; this section also discusses 
the old eigenfunction expansion approach to the problem. The proof of relaxation 
in the spatially homogeneous case is given in 9 3 by finding a state function Q which 
always decreases until thermal equilibrium is reached. Section 4 extends the proof 
to deal with the spatially inhomogeneous case. Section 5 considers the effect of an 
electric field, in which case the charged test particles do not relax to an equilibrium 
of thermal type, and may not relax at all. Section 6 shows that successive time 
derivatives of Q alternate in sign during relaxation with no electric field, irrespective 
of the magnetic field strength. Section 7 calculates alternative functionals to Q which 
also decrease, both with and without magnetic field, and discusses the conjecture that 
the alternating property picks out the physical entropy for the system. Conclusions 
are presented in 9 8. 

Table 1. Notation. 

I 
r 

B 
E 
4 
m 
M 
TM 

A 

U 

U 

f 
h 

N 
fM 

d 

U 

time 
position vector 
velocity of test particles 
magnetic field 
electric field 
test particle charge 
test particle mass 
host particle mass 
host particle temperature; in general a suffix M will denote a host particle property, and no suffix 
a test particle property 
2kTM/m 
A-1’2u: a dimensionless measure of velocity (also uM = A-’l2uM) 
test particle distribution function 
exp(u2)f: a quantity related to the distribution function and chosen to be constant in thermal 
equilibrium 
test particle concentration 
host particle distribution function. Since the host particles are in thermal self-equilibrium, fM is 
given by 

(1) 
We work in the frame in which the host particles have zero mean velocity 
a unit vector in the direction of motion of the test particle after an encounter with a host particle, 
asseen from thecentre-of-massframefor theencounter. Acircumflexwill alwaysdenote a unit vector 
the differential scattering cross section for the encounter, which is taken to be elastic 
The addition of a prime ’ to a quantity signifies that the value of that quantity is referred to after 
the collision 

fM d3uM = N M ( M / ~ ~ ~ T M ) ~ / ’  exp(-MvL/2kTM) d3uM. 

2. Introductory analysis 

The Boltzmann equation, which describes the evolution of the one-particle distribution 
function f for the test particles, is 

af+, * - + - ( E + u x B ) * - -  af 4 af 
at ar m a0 - (%,,, 
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where the term on the right-hand side of (2) represents the effect of collisions involving 
the test particles. Since the test particles are very dilute ( N  << N M ) ,  the dominant term 
on the right-hand side arises from interactions between test and host particles; collisions 
involving only test particles can be neglected. This also makes it consistent to assume 
that the host particles remain at all times in thermal self-equilibrium. The collision 
term is represented by an integral of Boltzmann’s form: 

(Chapman and Cowling 1970, p 63). The velocities of the test and host particles 
after the collision are given by 

(Waldmann 1958, p 335) and satisfy conservation of momentum and energy in the 
collision. 

It is readily verified from (2) and (3) that for zero electric field the thermal 
(Maxwellian) distribution does represent an equilibrium state. This is a necessary 
condition for relaxation to the thermal distribution to be possible, and is not a proof 
that such relaxation must occur. There is nothing in the following proof (09  3 and 4) 
which invalidates it when the magnetic field is allowed to vary with time; the restriction 
to static magnetic fields is made solely because from Maxwell’s equations such a field 
would induce an electric field, contrary to the above restriction. 

We transform the variables of integration in (3) to rewrite it as 

J J J  

where the scattering kernel K is symmetrical in velocities before and after the collision, 
and is positive definite: 

K ( u ’ ,  U )  = K ( u ,  U ’ )  (6) 

K ( u ’ ,  U ) 3 0 .  (7) 
It can be expressed in terms of the differential collision cross section U and the mass 
ratio m/M, and is given in the present notation by Garrett (1982). 

We restrict ourselves as yet to the case of spatial independence (alar = 0 )  in which 
the magnetic field becomes constant everywhere, and the initial distribution function 
has no spatial gradients. Consequently we are implicitly dealing with a situation 
pervading all real space. The Boltzmann equation (2) reduces to 

a f b t  + [ ( d m  )U x BI af/au = (af/at)col,. (8) 
When the magnetic field term in (8) vanishes, which happens either for zero 

magnetic field or when the initial distribution function f is symmetrical about the field 
(in which case it is also readily shown to remain so), the proof of relaxation is 
traditionally given by expansion of f in eigenfunctions of the collision operator (3); 
all the eigenvalues can be shown to correspond to decaying modes, except for the 
thermal distribution, which has a zero eigenvalue and therefore persists. Unfortunately 
a general proof that the eigenfunctions of the collision operator constitute a complete 
set of expansion functions is lacking, and has only been given for certain special 
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differential cross sections U :  for those for which the cross section integrated over solid 
angle is finite, by Koppel (1963) and Ferziger (1965), and for a very restricted class 
of cross sections for which the integrated cross section diverges, by Pao (1974). These 
works refer to a linearised version of the relaxation problem for a single-species gas, 
but it should be possible to generalise to the two-species problem considered here. 

3. Proof of relaxation: spatially independent case 

We introduce the state function 

Q = 11 d3u exp(-u2)h2 = d3u exp(u2)f2. 1 11 (9) 

The proof of relaxation in the more general case B # 0 is achieved by first showing 
that Q always decreases as the distribution function evolves, and second that Q is 
bounded below. It follows from these properties that Q must tend towards a constant 
value, greater than or equal to the lower bound. It is then shown that this value is 
the lower bound, and that this situation corresponds to thermal equilibrium. 

From (9), we have 

We substitute for af/at from the Boltzmann equation (8), using the form ( 5 )  of the 
collision integral, to give 

dQ/dt = 2  11/11] d3u d3u‘K(u’ ,  u)(h’-h)h - 2 ( q / m )  111 d3u [(U X B )  (af/au)]h. 

(11) 
We now show that the second (magnetic field) term in (11) is zero: in suffix notation, 
it can be rewritten as 

-(q/m)&,,kBk 111 d3U [ d ( U j  eXp(-U2)h2)/aUl -(2U,U, +81,)  eXp(-U2)h2]. (12) 

The first of the terms in the square brackets can be converted to a surface integral at 
U = 00, and consequently vanishes. The second is zero by virtue of the symmetry 
properties of the tensors involved when contracted. 

The remaining term in (1 l ) ,  due to collisions, is shown to be negative by interchang- 
ing U and U’, as allowed by the symmetry (6) of the kernel, and adding this to the 
original formula. The result is 

dQldt = -jIj/[j d3u d3u’K(u’, u)(h‘-h)2 

GO (14) 
as a consequence of the positivity property (7) of the kernel. Furthermore, dQ/dt is 
only zero when 

h (u )  =constant (15) 
which is the thermal distribution. 



Thermal relaxation and entropy for charged particles 1509 

Next we show how Q is bounded below. Denoting the thermal distribution by a 
suffix t ,  we have 

Q [ f l - Q [ f t l =  1 1 1 d3u exp(-u2)(h2-h:) 
J J J  

= 111 d3u exp(-u2)(h -hd2+2ht  111 d3u exp(-u2)(h - h l )  (17) 

where the fact that h,(u) =constant has been used in taking this factor out of the 
second integral in (17). Now the concentration is given by 

N = 111 d3u f = A3” 111 d3u exp(-u2)h. 

Since this quantity is conserved, the second integral in (17) vanishes, and we are left 
with 

2 0. (20) 

Equality only occurs in the thermal state. Chapman and Cowling (1970, p 67) present 
a more informal proof of the existence of a lower bound for Boltzmann’s H function. 

The argument given above equation (10) now proves that relaxation must occur. 
It can readily be seen from (13) that the constant value to which Q tends must be 
Q [ f t ] ,  for only then is dQ/dt vanishingly small. This proof also shows automatically 
that the thermal distribution is the only equilibrium solution of (8), since any other 
postulated equilibrium distribution function must eventually evolve to the thermal 
distribution. 

4. Proof of relaxation: spatially inhomogeneous case 

In order to generalise this proof to spatially inhomogeneous situations, it is necessary 
to integrate not only over velocity space but also over real space. We define the 
spatial averages 

The advantage of dividing by the volume V is that the analysis remains valid in the 
important limit V + CO, X finite. 

It is again shown that the thermal distribution (this time with a spatially indepen- 
dent, truly constant concentration of test particles) is a global minimising function for 
9. The calculation of d9/dt  proceeds by analogy with the above case; the collision 
term acts to decrease 9 and the magnetic field term leaves it unchanged, as before. 
The new, spatial inhomogeneity term in the expression for d9/dt  is, from (2), (9) 
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and (21), 

which becomes, on use of the divergence theorem in real space, 

If the region of real space with which we are concerned is infinite, (24) obviously 
vanishes; even if the surface integral is finite, the division by V ensures this. For 
finite regions, provided that the test particles are perfectly confined, there can be no 
flux of test particles in or out of the region in any velocity range: 

(25 )  

and consequently (24) must vanish. Only the collision term affects the evolution of 
2, and as before causes it to decrease until it reaches its lower bound at thermal 
equilibrium. 

It should be noted that there are states other than global thermal equilibrium for 
which &/dt is zero: these are states of local thermal equilibrium, in which the local 
temperature is constant but the concentration varies; the quantity h becomes purely 
a function of position. It is apparent that the collision term, and therefore &/dt, 
vanishes. However, from the Boltzmann equation, the spatial inhomogeneity must 
cause the distribution function to evolve away from local thermal equilibrium, so the 
collision term will then become non-zero, and cause 9 to decrease, as before. The 
zero of d2/dt  in local thermal equilibrium is instantaneous, rather than permanent. 

d2S * (uf d3u) = 0 

5. Effect of an electric field 

In the presence of an electric field, it is readily apparent that the thermal distribution 
is no longer the equilibrium solution of the Boltzmann equation (2). This is reflected 
in a breakdown of our proof as follows. For simplicity we consider only the case of 
zero ambient magnetic field, and spatial homogeneity, so that the electric field is 
everywhere the same. Then, from (2) and ( lo) ,  the expression for dQ/dt in the 
presence of the electric field is changed by an amount 

-2(q/mA”2) 111 d3u h(E . af/au) 

= -(q/mA1”)E 111 d3u[~(exp(uz ) fz ) /~u  - 2 u  exp(u2)fz]. (26) 

Again, the first term in the square brackets on the right-hand side can be reduced to 
a surface integral at U = CO and neglected. The second term will not vanish since the 
electric field ultimately induces a drift of charged particles parallel to itself at all 
velocities: 4E * U is always positive (even if 4 is negative) and so (26) is also positive. 
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This term therefore always opposes the term (13) arising from collisions, which always 
acts to decrease Q. The crucial monotonicity property (14) of Q is destroyed, and 
so it is not directly provable from this approach that if an equilibrium exists between 
the two terms, the system is forced to approach it. Such an equilibrium may very 
well not exist if collision effects are sufficiently weak for high-energy particles, a 
situation leading to the phenomenon of particle runaway. These questions are 
reviewed by Kumar er a1 (1980, section 5b). Nor is it an easy matter to construct a 
monotonic functional of the distribution function in which the electric fields appear 
explicitly in the definition, which would be another way of attacking such questions; 
clearly further work remains to be done in these areas. 

6. Alternation of higher derivatives of Q 

It will now be shown that, in the absence of electric field and spatial inhomogeneity 
and for static magnetic field, successive derivatives of Q alternate in sign at all times 
during the relaxation. This is of interest as a result of the conjecture (McKean 1966) 
that only one functional of f should possess this property, and that it should be 
identified as the entropy for the system. There is no a priori reason to suppose that 
our Q is related to entropy; the standard definition of the (negative) entropy in a gas 
mixture is just the sum of the individual (negative) entropies of the various constituents, 

(Chapman and Cowling 1970, p 81), which does not reduce to (9) even in the relevant 
limit of thermally distributed host particles and infinite dilution of the test particles. 
Simons (1969) has shown that for a single-species gas sufficiently close to equilibrium, 
Q and the Boltzmann entropy differ only by a constant, but we are concerned here 
with arbitrarily large perturbations. 

The proof of alternation is inductive, and is based on that of Simons (1969) for 
the linearised single-species problem. It has been generalised to allow for the magnetic 
field: this is the first time that the alternating derivative property has been studied 
for anything other than spatially homogeneous field-free situations. 

We define a scalar bracket of two functions a, p of a vector-valued argument: 

From (9), therefore, 

We also rewrite the collision operator (5) as 

By comparison with ( 5 )  and the definition of h, the new kernel K“’ can be written as 

K“’ (u‘ ,  u ) = K ( u ‘ ,  U ) - S 3 ( U ’ - U ) .  (31) 

Differentiability of K’” with respect to its arguments will be assumed: although this 
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is not rigorous in view of the delta function in (31), a full analysis would give the 
same results. 

We need as lemmas the following results. 

where the iterated kernel K'")  is symmetrical with respect to its two arguments. This 
is proved by noting from (6) and (31) that K"' has this property, and that by repeated 
application of (30) 

K(,)(u,  U,) = I.. . [ d3u1 d 3 u Z . .  . d 3 ~ , - l K i 1 ' ( ~ ,  U I )  exp(u:)K"'(ul, U Z )  

(33) 

in which form the symmetry is manifest. Furthermore, since no external vector has 
been introduced into (33), these kernels can only depend on scalar products of the 
vectors involved: 

(34) 

2 (1) xexp(u2) .  . . K (U,,+ ~ ~ - 1 )  exp(u?-1)K"'(ufl-1, U,), 

K y u ,  U,) =Xifl'(u2, U?, U * U,) 

where X'"' is symmetrical with respect to its first and second arguments. 

and 

(a ,  L a )  c 0. (36) 

These relationships are just the well known self-adjointness property of the collision 
operator and the statement that its eigenvalues are negative: in view of (29) the latter 
equation is essentially the statement, at the heart of 0 3, that Q cannot increase. They 
are proved by writing (a ,  L p )  in full, and adding to it the equal expression given by 
interchanging U and U' in the integrations, as the symmetry (1  1) of K allows. This gives 

x [exp(u")p (U' )  - exp(u ' ) P  (U  )I. (37) 

Since (37) is symmetrical in a and p it could equally well have come from (La, p) ;  
(35) now follows. Inequality (36) is immediately recovered from (37) by putting p = a 
and using the positivity property (7) of K. 

The (inductive) proof that successive derivatives of Q alternate in sign is as follows. 
Suppose 

d"Q/d t "  = 2"(f, L n f ) .  

Then 

dn+'Q/dt"+l = 2""(af/at, L"f )  

using the fact that the operators a/at and L commute, and also property (35). If we 
now substitute for aflat from the Boltzmann equation (8), we find that 

dn+lQ/dt"il = 2"+'(Lf, L"f)-2""(q/m)(~ x B  - (af/au), L"f).  (40) 
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By (35) again, the first of these brackets is 2""(f, Ln+'f). Thus if we can establish 
that the second bracket in (40) vanishes, we will have an inductive chain. Write this 
term, using h rather than f, and from equation (32), as 

(U x B  ' (af/au), Lflf) 

We rewrite the integrand in (41) as 

exp(u ')u,a(exp(-u ')h (u))/au,K'"'h (U,) 

= -(2uIu1 +6,,)K'"'h(u)h(u,) + h(u,)a{USc'"'h(u)}/aU, 

- U,h(U)h(u,)aK'"'/aU,. (42) 

The first term on the right-hand side of (42) is symmetrical in indices i and j and 
consequently vanishes on contraction with The second term vanishes when 
substituted back into (41) as a consequence of the divergence theorem in U space. 
We are therefore left with 

(U XB (df/au), L"f) 

2 2 where 6 = U , 7 = U ,  and p = U U,, using (34) to rewrite the kernel. Both terms in 
the square brackets in (44), when integrated over U and U,, yield forms symmetrical 
in i and j ,  which therefore vanish on contraction with & , j k .  The bracket vanishes, and 
so, from (40), we have established the inductive chain: if (38) holds for some n, it 
also holds for all successive values. It holds by definition (29) for n = 0, and for n = 1 
is the subject of § 3. Therefore (38) is established for all values of n. Alternation is 
assured from (28), (35) and (36): if n is even then 

(45) d"Q/dt" = 2"(L"/'f, L"/'f) 2 0 

in view of (35) with a =Lin-*'"f. It follows as the result of a theorem by Bernstein 
(1928) that Q can be expressed as the Laplace transform (with respect to time) of a 
non -negative definite function. 

Although the magnetic field drops out of the expressions for time derivatives of 
Q in terms of the distribution function f, it does still influence the evolution of Q 
through its effect on the evolution off, as given by the Boltzmann equation (8). 

Note finally that, by making a Taylor expansion of Q about the initial conditions 
and using (38), 
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7. Other choices of the relaxation state function 

The motivation behind McKean's conjectures is dissatisfaction with the standard 
definition (27) of the (negative) entropy; the fact that this quantity always decreases 
is only a necessary, rather than a sufficient, condition for the identification of (27) 
with entropy. Harris (1968a, b) has presented evidence why (27) should not be 
regarded as the entropy, at least for hard-sphere gases in finite concentrations, and 
has given different expressions. Rejection of (27) implies spurning the information- 
theoretical aspects of the problem (Maass 1970). 

In this section we find an infinite family of monotonically decreasing functionals 
of the distribution function f in the field-free case, and show that a (infinite) subset 
of these functionals still retains this property in the presence of a magnetic field. 
Among this subset are our own Q, and several functionals closely related to (27). 
McKean's conjecture that the alternating derivative property for free thermal relaxa- 
tion serves to pick out the physical entropy seems untenable, at least for this problem, 
in view of the non-trivial discrepancy between Q and (27). Maass (1970) and Garrett 
(1983) have also shown that, for particular collision models, the property does not 
uniquely pick out only one functional. The second of these papers refers to the 
important case of the single-species nonlinear field-free spatially homogeneous 
Boltzmann equation, and also shows that the alternating derivative hypothesis breaks 
down for this collision model. 

It is easily shown that, in the absence of fields and spatial inhomogeneities, pny 
functional 

for which 4 is an algebraic function of h with positive curvature: 

d24/dh 3 0, Vh 2 0  (49) 

dO/dt s 0. (50) 

can never increase: 

This is proved as follows. For ease define 

4 = d4/dh. (51) 

Then 

dO/dt = 111 d3u4(aflat). 

If we now substitute for aflat from the Boltzmann equation, and then use the standard 
trick of interchanging U and U '  and adding the original and interchanged equations, 
we find 

in an obvious shorthand notation. The property (50) of uniform decrease follows 
immediately from (49), (52) and (53). It can also be shown that the thermal distribution 
(15) is the only stationary distribution for @: this is accomplished by considering small 
variations in O induced by varying the distribution function. Only variations which 
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preserve the concentration (18) are permitted; this is dealt with by introducing a 
Lagrange multiplier. Care should be taken to check that the stationary, thermal 
distribution is a minimum, and a global rather than just a local one. 

The functionals @ given by (48) and (49) are complete in that they are the only 
functionals which decrease uniformly and are made stationary by the thermal distribu- 
tion: for if there were a region in which (49) were not satisfied, h could be chosen as 
a very sharp peak in that region, and, from (53), @ would increase. Also, if @ were 
permitted to have dependence on U other than through h, the analysis would show 
that the thermal distribution no longer makes it stationary. It remains open whether 
our Q is the only state function @ with all derivatives alternating in sign. 

In the presence of a magnetic field, there is an extra term 

= P I J k B k  111 d3u[a(uJfwaUl -&f$ -u$(dd~/dh)(ahlau~)I 

E d k  111 d3u uJ(af/au,)(-d(I,/d(ln h)). 

(54) 

in the expression (53) for the evolution of 0. The first two terms on the right-hand 
side of (54) vanish by virtue of the divergence theorem and tensor symmetry respec- 
tively. The third term, after further manipulation, simplifies to 

( 5 5 )  

This is the same as the left-hand side of (54) except that (I, has been differentiated 
with respect to -In h. By repeated application of this prescription, the term can clearly 
be written as 

provided only that the sum of the coefficients A,, is unity. The term will vanish if G(h) 
satisfies the differential equation 

A,(-d/d(ln h))"(I, = 0 
n = O  

(57) 

for some such set {A,,}. Even with the magnetic field present there is a vast freedom 
of choice of decreasing functionals @! 

Evidently the choice 
1 

q5 = h2, (I, = 2h, ho = A 1 = 3, A z = A 3 = .  . . = O  (58) 

corresponds to our own functional, Q. Other possibilities include any positive power 
of h, and various combinations of powers and logarithms, quite similar to (27). They 
must still satisfy (49) in order to be potential candidates for the physical entropy, and 
would then serve as well as Q in proving that relaxation occurs. 

8. Conclusions 

It has been demonstrated with full rigour that relaxation to thermal equilibrium of a 
very dilute species of charged particle in a heat bath of other particles must always 
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occur, even in the presence of a magnetic field. This result is of potential use in all 
applications of dilute plasmas (Kumar et a1 (1980) give a summary). The conflicting 
definitions of entropy for the problem have been examined by means of McKean’s 
conjecture that successive time derivatives of the entropy should alternate in sign; a 
functional possessing this property has been found, and the property persists even 
with magnetic field. The conjecture seems to be of dubious validity in this example. 
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